DEEP LEARNING TOOLS and FRAMEWORKS

HAMID PALANGI

റ

DEEP LEARNING GROUP, MICROSOFT RESEARCH AI

REDMOND, WA, USA

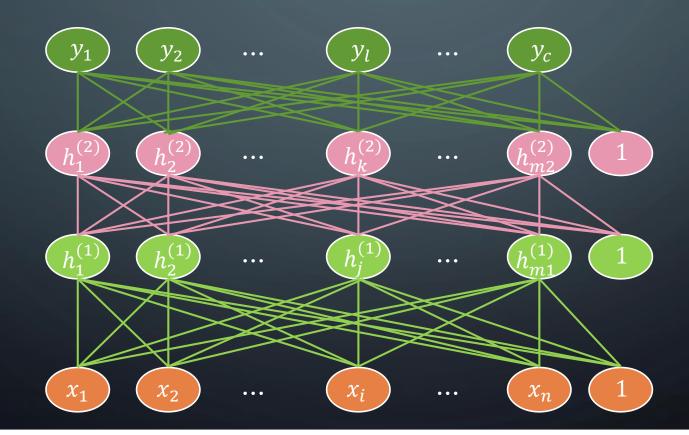
November 16, 2017 at IEEE GlobalSIP, Montreal, Canada

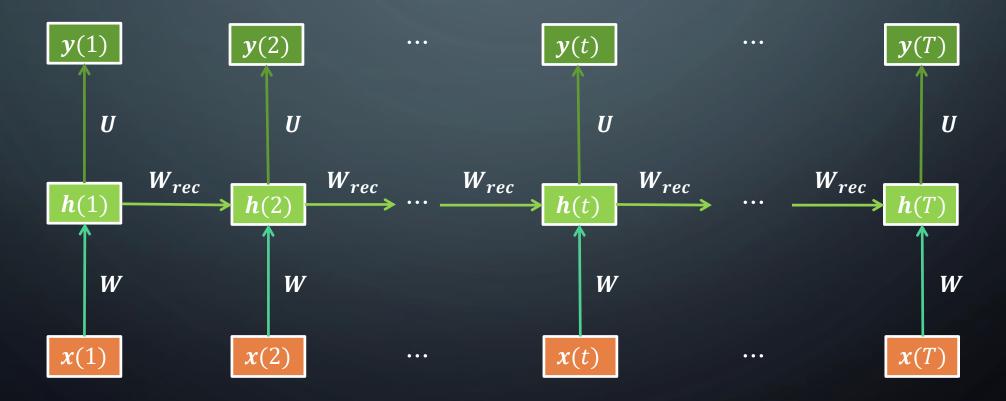
Acknowledgements: Xiaodong He, Susan Dumais, Li Deng, Jianfeng Gao, Kenneth Tran, Yelong Shen, Xinying Song, Po-Sen Huang, Paul Smolensky, Z. Jane Wang, Rabab Ward

DEEP LEARNING (DL)

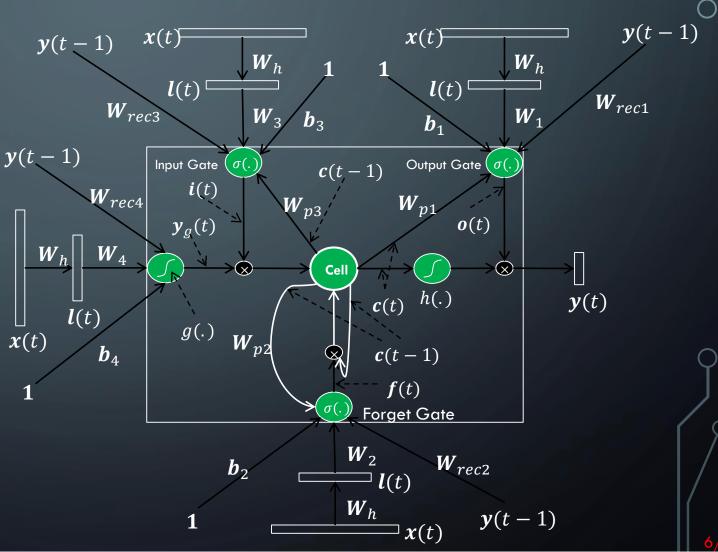
Is it "<u>always</u>" good to use DL models for my task?

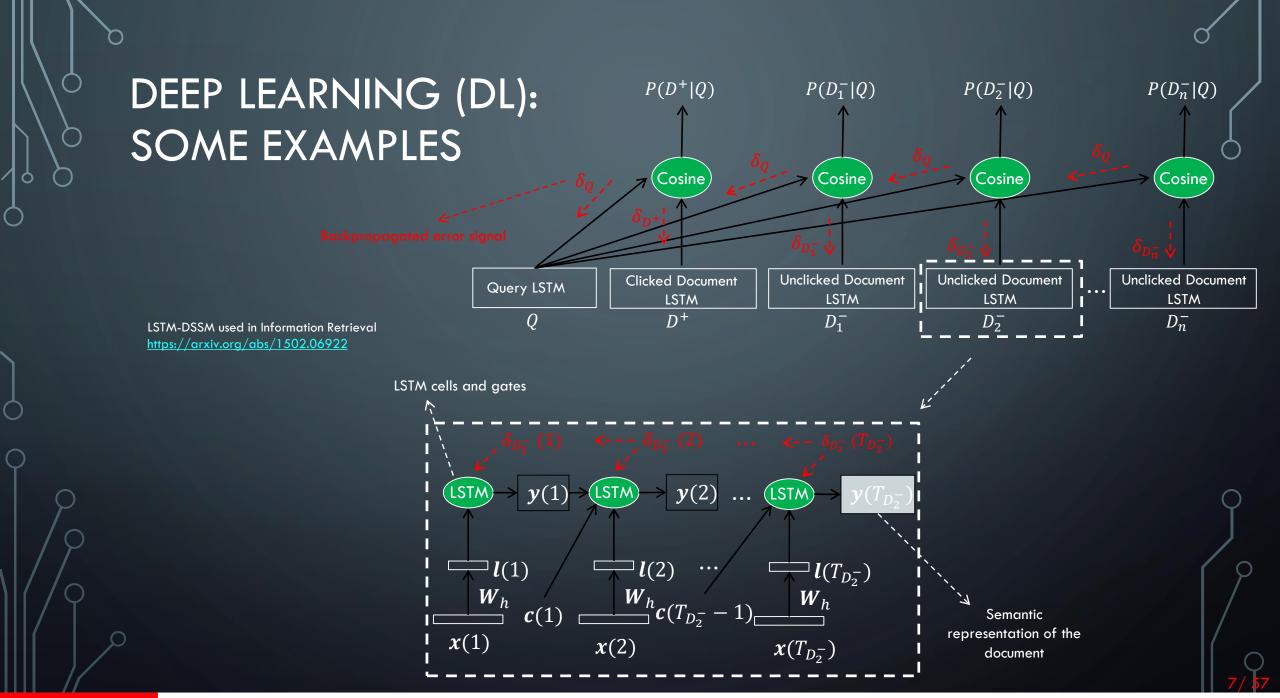
DEEP LEARNING (DL)


Is it "<u>always</u>" good to use DL models for my task?

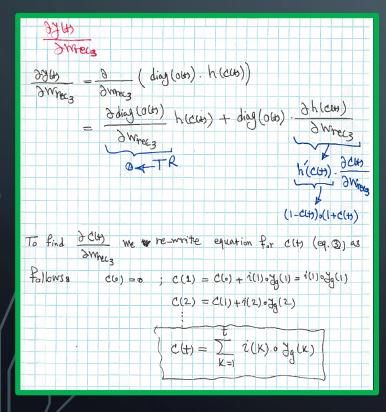

DEEP LEARNING (DL): SOME EXAMPLES

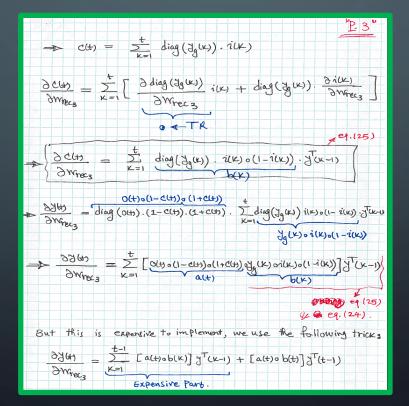
• Feedforward NN

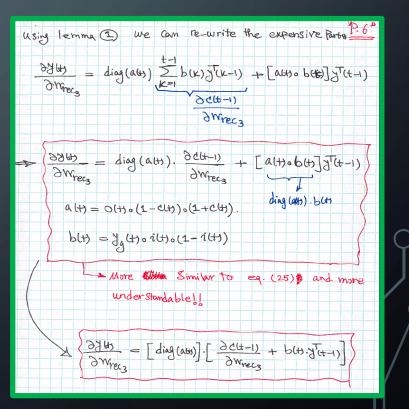

DEEP LEARNING (DL): SOME EXAMPLES


Recurrent Neural Network (RNN)

DEEP LEARNING (DL): SOME EXAMPLES

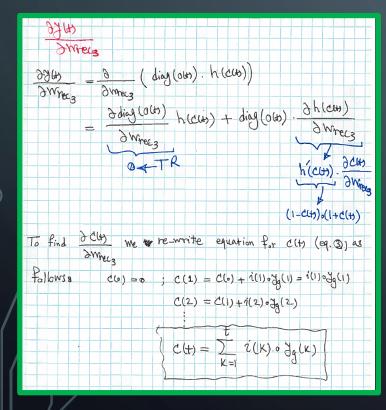

- Long Short-Term Memory
 - LSTM

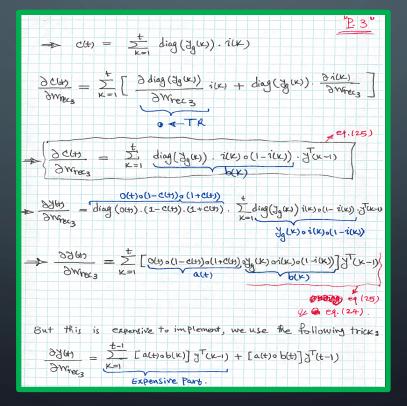


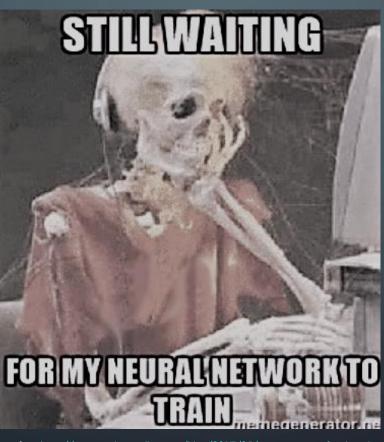


MANUAL GRADIENT CALCULATION

• Good idea to learn stuff. Bad idea to get the job done ASAP.






MANUAL GRADIENT CALCULATION

• Manual gradient calculation & implementation is prone to bugs, make sure to perform the "gradient check"

Picture from https://www.analyticsvidhya.com/blog/2017/05/gpus-necessary-for-deep-learning/

• [2012]

 \sim

01

Building High-level Features Using Large Scale Unsupervised Learning

Quoc V. Le Marc'Aurelio Ranzato Rajat Monga Matthieu Devin Kai Chen Greg S. Corrado Jeff Dean Andrew Y. Ng QUOCLE@CS.STANFORD.EDU RANZATO@GOOGLE.COM RAJATMONGA@GOOGLE.COM MDEVIN@GOOGLE.COM KAICHEN@GOOGLE.COM GCORRADO@GOOGLE.COM JEFF@GOOGLE.COM ANG@CS.STANFORD.EDU

From https://arxiv.org/abs/1112.6209

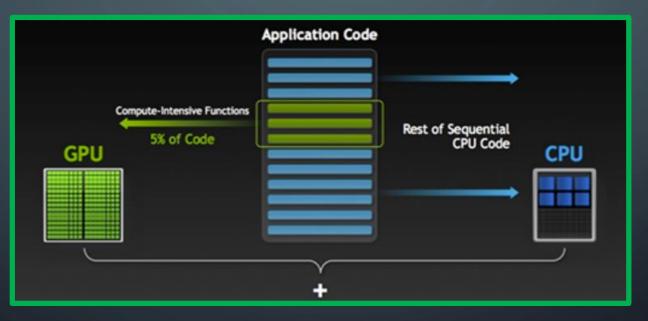
2,000 CPUs (16,000 cores) – 600 kWatts - \$5,000,000

From https://www.wired.com/2012/06/google-x-neural-network/

• [2013]

3 GPUs (18,432 cores) – 4 kWatts - \$33,000

DANIELA HERNANDEZ BUSINESS 06.17.13 6:30 AM



Andrew Ng. Photo: Ariel Zambelich/Wired

From https://www.wired.com/2013/06/andrew_ng/

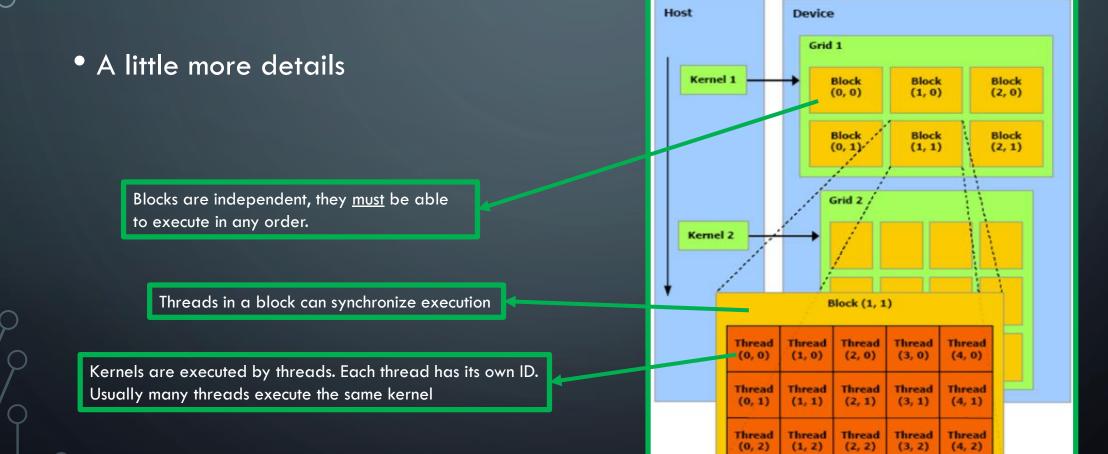
• GPU acceleration

From http://www.nvidia.com/object/what-is-gpu-computing.html

Called & executed by device

- CUDA is C with a few extensions
 - Use of function type qualifiers (
 - Determine if a function is executed on the host (CPU) or device (GPU)
 - Determine if a function is callable from the host or the device
 - Use of variable type qualifiers (_______, _____, ____) to:
 - Determine the memory location of a variable
 - Adding a new directive to:
 - Determine how a "kernel" is executed on the device from the host
 - Using 4 built in variables (gridDim, blockDim, blockIdx, threadIdx) to:
 - Specify grid dimensions, block dimensions, block indices and thread indices

Called by host, executed by device


Called & executed by host

) to:

Variable in shared memory, has lifetime of block

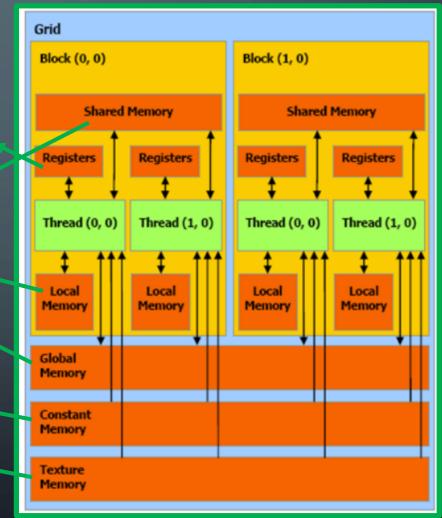
A function that is executing portion of an application on the device (GPU)

Variable in global memory, has lifetime of the application

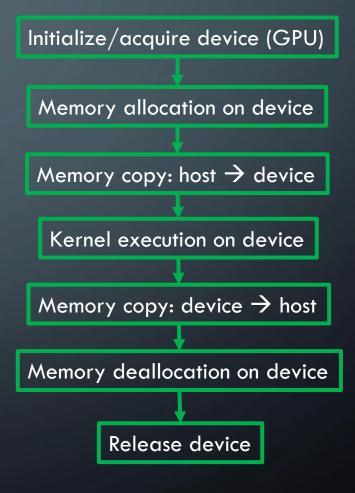
Picture from http://geco.mines.edu/tesla/cuda_tutorial_mio/

• A little more details

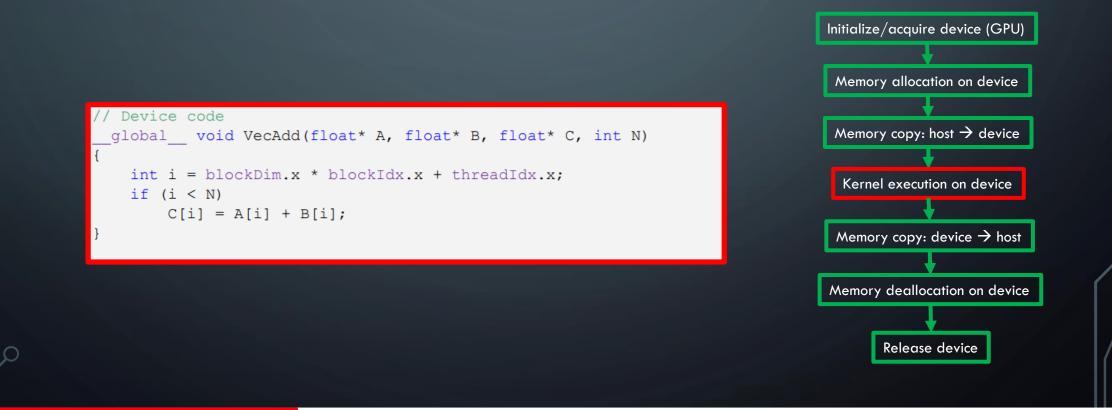
Quite fast, R/W, Only accessed by 1 thread – This is thread space


Fast, R/W, Accessed by all threads in a block (16 KB) – This is for thread collaboration

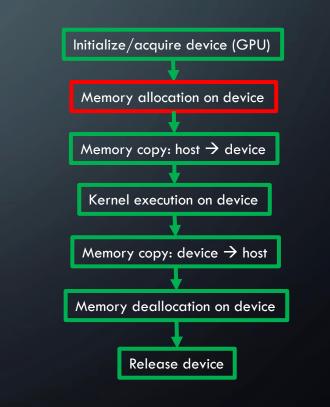
Quite fast, R/W, Only accessed by 1 thread


Not as fast as local & shared memory, R/W, Accessed by all threads and CPU (4 GB) – Used for IO for Grid

R, Accessed by all threads and CPU

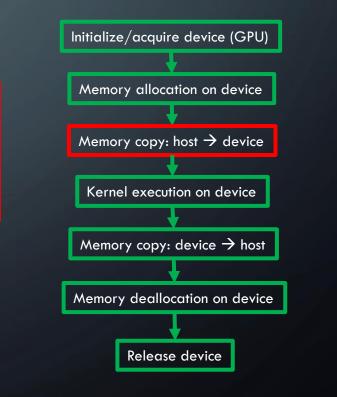

R, Accessed by all threads and CPU

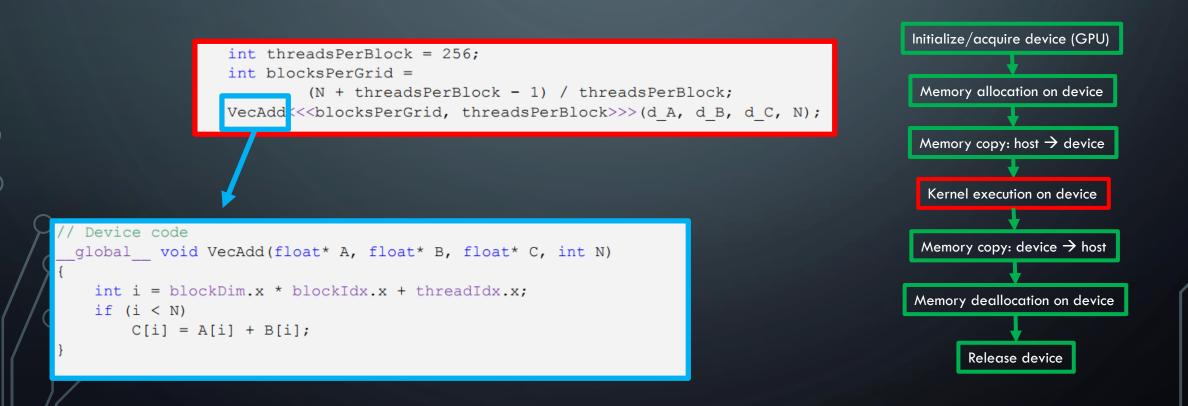
• Workflow [from <u>http://geco.mines.edu/tesla/cuda_tutorial_mio/</u>]



• Simple example: adding 2 arrays [from https://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA C Programming Guide.pdf]

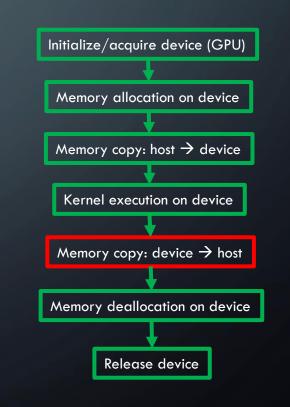
• Simple example: adding 2 arrays [from https://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf]


```
// Host code
int main()
   int N = \ldots;
   size t size = N * sizeof(float);
   // Allocate input vectors h A and h B in host memory
   float* h A = (float*)malloc(size);
   float* h B = (float*)malloc(size);
    // Initialize input vectors
    . . .
    // Allocate vectors in device memory
   float* d A;
   cudaMalloc(&d A, size);
   float* d B;
    cudaMalloc(&d B, size);
   float* d C;
    cudaMalloc(&d C, size);
```

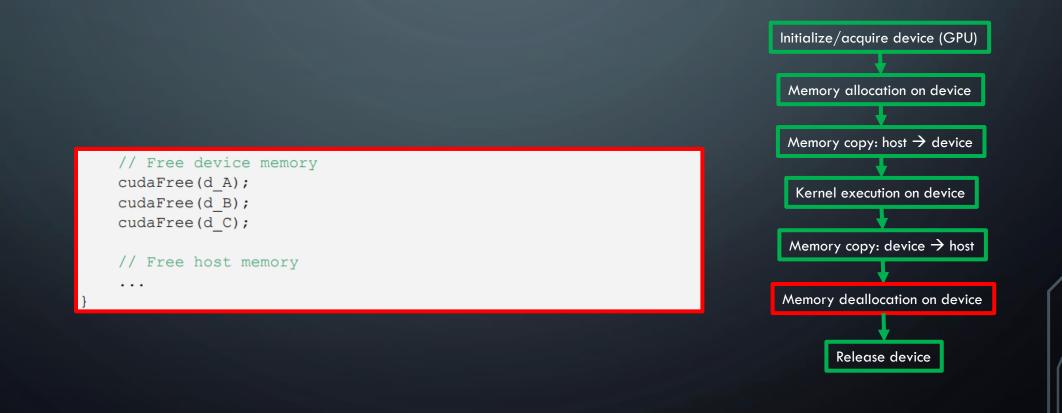


• Simple example: adding 2 arrays [from https://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA C Programming Guide.pdf]

// Copy vectors from host memory to device memory
cudaMemcpy(d_A, h_A, size, cudaMemcpyHostToDevice);
cudaMemcpy(d_B, h_B, size, cudaMemcpyHostToDevice);

// Invoke kernel



• Simple example: adding 2 arrays [from https://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA C Programming Guide.pdf]



Simple example: adding 2 arrays [from https://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA C Programming Guide.pdf]

// Copy result from device memory to host memory
// h_C contains the result in host memory
cudaMemcpy(h_C, d_C, size, cudaMemcpyDeviceToHost);

• Simple example: adding 2 arrays [from https://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA C Programming Guide.pdf]

DL FRAMEWORKS: MICROSOFT COGNITIVE TOOLKIT (CNTK)

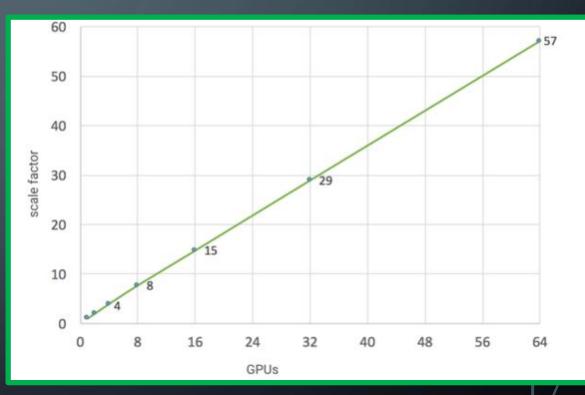
- From Microsoft
- Supported interfaces: C#, Python, C++ and Command Line
- High scalability
 - Scales across GPUs & machines
- Very fast for sequential models
 - E.g., RNNs, LSTMs
- No commercial support

DL FRAMEWORKS: TENSORFLOW

- From Google
- Supported interfaces: Python, C++ (and experimental support for Java API: not quite stable yet)
- Capability to run on multiple CPUs / GPUs.
- Computation graph compiles faster than Theano (RIP)
- There is no commercial support
- Creates static graphs
- Not closely similar to numpy

DL FRAMEWORKS: TORCH & PYTORCH

- Torch is Maintained by Facebook/Twitter/Google (DeepMind)
- Supported interfaces for Torch: C, C++, Lua
- PyTorch (open sourced in Jan. 2017 by Facebook) is not a Python binding into a C++ framework, it is built to be integrated in Python. Can be used naturally like numpy, scipy, ...
- PyTorch Tensors can be used either on CPU or GPU, a replacement for numpy to use GPUs
- PyTorch builds NNs dynamically [computation graph built at run-time]:
 - TensorFlow, CNTK, Caffe and Theano (RIP): Build NN & reuse it, if you want to change NN architecture, you should build another NN from scratch [static: computation graph is first "compiled", and run after that]
 - PyTorch: Uses Reverse-mode auto-differentiation that allows changing NN's behavior with quite low overhead = high flexibility for research projects
- It is easy to write your own layer types
- There is no commercial support



DL FRAMEWORKS: CAFFE

- From Berkeley Vision and Learning Center (BVLC)
- Supported interfaces: Python, MATLAB, C++, C, Command line
- Quite useful when using CNNs
- Rich set of pre-trained models (Model Zoo)
- Initial focus: Computer Vision
- Drawbacks: Documentation, many dependencies, flexibility (need to code in C++ and cuda for significant modifications to the architecture, e.g., new layers to be run on GPU)
- Appropriate for computer vision production code (robust and fast)
- For initial experiments and exploration use a high level API (e.g., Keras), after that use Caffe for production
- Not appropriate for Recurrent Neural Networks (RNNs)
- No commercial support

DL FRAMEWORKS: CAFFE2

- From Facebook, built on the top of caffe
- Supported interfaces: Python, C++
- High scaling properties
 - E.g., close to linear scaling with ResNet-50
 - Has made CNNs' distributed training easier
 - Better memory optimization than Caffe
 - Capability for mixed precision computations
 - float, float16, int8, ...
- No commercial support

ImageNet training using 64 NVIDIA Tesla P100 GPUs, 8 servers each one having 8 GPUs

[Figure from: https://devblogs.nvidia.com/parallelforall/caffe2-deep-learning-framework-facebook

DL FRAMEWORKS: THEANO (RIP)

- One of the first DL libraries, from Yoshua Bengio's lab (MILA)
- Supported interfaces: Python
- Not as scalable as other DL frameworks, e.g., lacks multi-GPU support
- A lot of low level coding should be done when using Theano (there are high level wrappers on the top of Theano though, e.g., Keras and Lasagne)
- Compile time of computation graph is too long sometimes
- On Sept. 28, 2017 MILA announced that it will stop developing Theano (RIP Theano)
 ...

DL FRAMEWORKS: MXNET

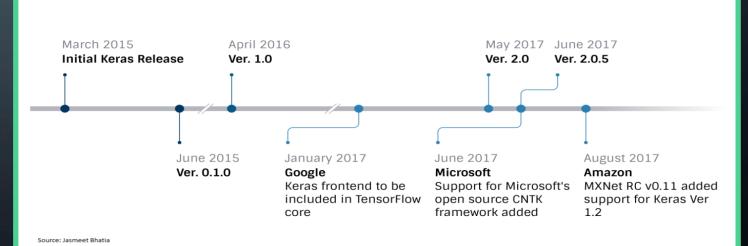
- Supported interfaces: Python, C++, R, Julia
- Scalable, can run experiments on multiple GPUs and machines
- Amazon's "DL framework of choice"

DL FRAMEWORKS: DEEPLEARNING4J (DL4J)

- Developed by Skymind (a San Francisco-based software firm)
- Supported interfaces: Java & Scala, compatible with JVM
- Can be implemented on the top of Big Data tools, e.g., Apache Hadoop and Apache Spark
- Good documentation

DL FRAMEWORKS: BIGDL

- From Intel
- Supported interfaces: Python and Scala
- Distributed DL library for Spark: Can run directly on the top of Apache Hadoop and Spark clusters.
- High scalability
- You can load pretrained Torch / Caffe models into Spark



DL FRAMEWORKS: HIGH LEVEL NN APIs

- An easier way to build your DL models:
 - Keras
 - Supported interface: Python
 - You can build a DL model in a few lines of code.
 - Can use Theano (RIP), TensorFlow, Microsoft Cognitive Toolkit (CNTK), MXNet or DL4j as backend

Picture from https://www.datasciencecentral.com/profiles/blogs/search-for-the-fastest-deep-learning-framework-supported-by-keras

DL FRAMEWORKS: HIGH LEVEL NN APIs

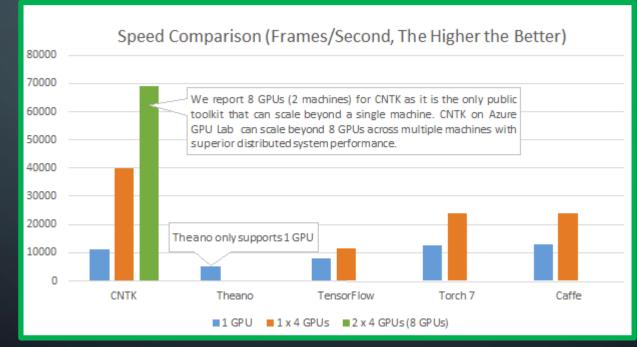
• An easier way to build your DL models:

• Lasagne

- Supported interface: Python
- Can only use Theano (RIP) as backend
- Not as good documentation as Keras
- Note: although these APIs make it easy to build DL models, they might not be as flexible as using the backend DL libraries directly.

DL FRAMEWORKS: A FEW MORE

• Chainer


- From a Tokyo start up named Preferred Networks
- Was the only framework for dynamic computation graphs before PyTorch

• DSSTNE

- From Amazon, written mainly in C++
- Amazon decided to support MXNet on AWS
- DyNet
 - From CMU, supports dynamic computation graphs
 - Community is not as large as other frameworks
- Gluon
 - From Microsoft & Amazon: High level API on the top of MXNet [Announced Oct. 2017]
- Paddle
 - DL framework from Baidu

DL FRAMEWORKS: BENCHMARKING EFFORTS

CNTK vs TensorFlow vs Theano vs Torch vs Caffe

Picture from MSR blog, Dec. 7, 2015

• From https://github.com/hclhkbu/dlbench

288.178ms(2496.103s)

128

383.212ms(6553.839s)

alexnet on K80													
Tesla K80, CUDA:	8.0 CUDNN: v5.1 CUDA_DRIVER: 367.48 Netv	vork: alexnet											
BatchSize	Caffe	CNTK	MXNET	TensorFlow	Torch								
86	13.625ms(339.932s)	11.215ms(265.182s)	11.672ms(274.673s)	37.750ms(882.664s)	14.266ms(358.039s)								
128	19.511ms(327.894s)	14.883ms(236.889s)	15.496ms(245.240s)	54.314ms(853.009s)	19.924ms(335.840s)								
256	36.815ms(311.379s)	27.215ms(217.514s)	28.994ms(229.586s)	103.960ms(818.209s)	37.462ms(315.710s)								
512	71.104ms(301.520s)	54.548ms(217.935s)	54.881ms(217.607s)	202.342ms(796.155s)	72.871ms(307.042s)								
1024	140.007ms(297.183s)	103.069ms(206.114s)	105.975ms(210.728s)	398.114ms(783.322s)	143.613ms(302.626s)								
2048	277.656ms(300.443s)	197.756ms(201.892s)	212.700ms(212.388s)	783.488ms(786.463s)	285.177ms(300.476s)								
resnet on K80													
Tesla K80, CUDA:	8.0 CUDNN: v5.1 CUDA_DRIVER: 367.48 Netv	vork: resnet											
BatchSize	Caffe	CNTK	MXNET	TensorFlow	Torch								
11	101.328ms(18984.640s)	77.144ms(14049.724s)	50.536ms(9191.549s)	108.827ms(19816.777s)	47.548ms(9141.084s)								
16	109.304ms(14227.879s)	54.484ms(6831.130s)	59.298ms(7415.866s)	123.418ms(15453.923s)	58.778ms(7794.904s)								
32	143.987ms(9561.758s)	81.470ms(5112.876s)	84.545ms(5287.561s)	181.404ms(11365.723s)	90.935ms(6021.554s)								
64	225.325ms(7613.368s)	181.920ms(5710.661s)	147.274ms(4605.828s)	301.445ms(9453.074s)	164.761ms(5455.466s)								

266.322ms(4164.944s)

563.190ms(8830.668s)

307.323ms(5079.835s)

• From http://dlbench.com/hkbu.edu.hk/ and http://github.com/hclhkbu/dlbench

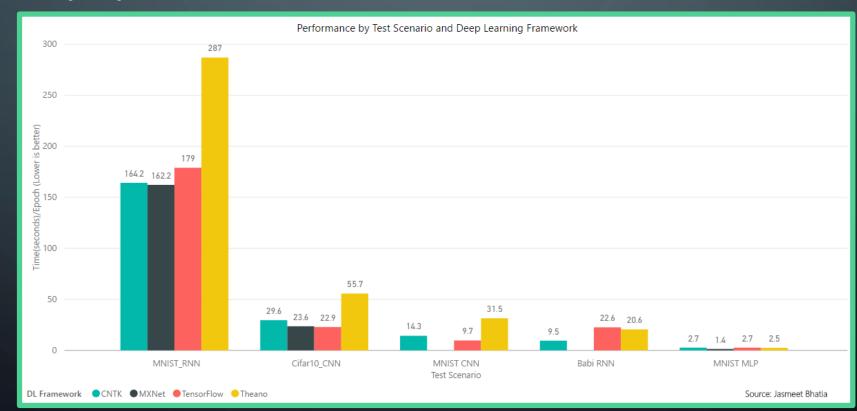
Item in cell: batchTime(totalTime)										
fcn5 on K80			Almost all of them are equa							
Tesla K80, CUDA:	3.0 CUDNN: v5.1 CUDA_DRIVER: 367.48 Ne	twork: fcn5								
BatchSize	Caffe CNTK		MXNET	TensorFlow	Torch					
342	25.271ms(199.234s)	23.838ms(253.527s)	30.711ms(218.684s)	28.622ms(213.854s)	24.435ms(186.543s)					
512	31.956ms(172.195s)	30.047ms(227.684s)	38.298ms(182.741s)	37.560ms(190.068s)	30.554ms(157.515s)					
1024	55.329ms(151.994s)	51.038ms(205.680s)	60.448ms(144.837s)	62.044ms(159.047s)	52.154ms(135.299s)					
2048	98.740ms(140.120s)	92.788ms(197.777s)	104.051ms(125.150s)	111.653ms(145.926s)	90.818ms(118.498s)					
4096	184.107ms(132.149s)	175.332ms(190.883s)	182.601ms(110.287s)	211.366ms(138.959s)	168.122ms(110.418s)					

i on K80

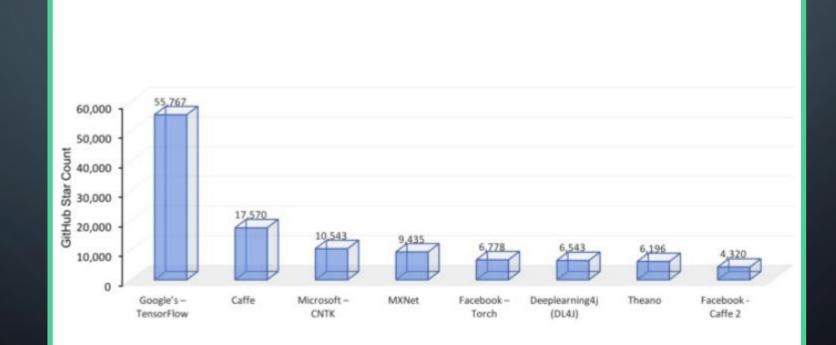
Tesla K80, CUDA: 8.0 CUDNN: v5.1 CUDA_DRIVER: 367.48 Network: Istm

BatchSize	СИТК	MXNET	TensorFlow	Torch
64	40.967ms(11922.492s)	87.171ms(1674.387s)		287.026ms(3412.095s)
128	42.736ms(6230.025s)	151.189ms(1451.132s)		565.879ms(3388.249s)
256	43.581ms(3187.478s)	288.142ms(1381.371s)		1130.606ms(3408.770s)
512	49.712ms(1826.834s)	560.380ms(1344.809s)		2312.802ms(3547.659s)
1024	63.695ms(1177.922s)	1101.696ms(1303.797s)	-	5073.561ms(4061.392s)

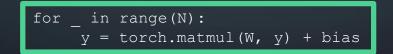
• Shaohuai Shi et al, IEEE CCBD 2016 [https://arxiv.org/pdf/1608.07249v7.pdf]


	I		Des	top CPU	(Threads u	(sed)		Server CPU (Threads used)							Single GPU			
							1	2	4	8	16	32	G980 G1080 K80					
		Caffe	1.324	0.790	0.578	15.444	1.355	0.997	0.745	0.573	0.608	1.130	0.041	0.030	0.071			
		CNTK	1.227	0.660	0.435	-	1.340	0.909	0.634	0.488	0.441	1.000	0.045	0.033	0.074			
	FCN-S	TF	7.062	4.789	2.648	1.938	9.571	6.569	3.399	1.710	0.946	0.630	0.060	0.048	0.109			
	ŀ	MXNet	4.621	2.607	2.162	1.831	5.824	3.356	2.395	2.040	1.945	2.670	-	0.106	0.216			
	F	Torch	1.329	0.710	0.423	-	1.279	1.131	0.595	0.433	0.382	1.034	0.040	0.031	0.070			
Ē		Caffe	1.606	0.999	0.719	-	1.533	1.045	0.797	0.850	0.903	1.124	0.034	0.021	0.073			
	F	CNTK	3.761	1.974	1.276	-	3.852	2.600	1.567	1.347	1.168	1.579	0.045	0.032	0.091			
	AlexNet-S	TF	6.525	2.936	1.749	1.535	5.741	4.216	2.202	1.160	0.701	0.962	0.059	0.042	0.130			
	t t	MXNet	2.977	2.340	2.250	2.163	3.518	3.203	2.926	2.828	2.827	2.887	0.020	0.014	0.042			
	ŀ	Torch	4.645	2.429	1.424	-	4.336	2.468	1.543	1.248	1.090	1.214	0.033	0.023	0.070			
		Caffe	11.554	7.671	5.652	-	10.643	8.600	6.723	6.019	6.654	8.220	-	0.254	0.766			
	t t	CNTK	-	-	-	-	-	-	-	-	-	-	0.240	0.168	0.638			
	RenNet-50	TF	23.905	16.435	10.206	7.816	29.960	21.846	11.512	6.294	4.130	4.351	0.327	0.227	0.702			
	ľ	MXNet	48.000	46.154	44.444	43.243	57.831	57.143	54.545	54.545	53.333	55.172	0.207	0.136	0.449			
		Torch	13.178	7.500	4.736	4.948	12.807	8.391	5.471	4.164	3.683	4.422	0.208	0.144	0.523			
Ē		Caffe	2.476	1.499	1.149	-	2.282	1.748	1.403	1.211	1.127	1.127	0.025	0.017	0.055			
	ľ	CNTK	1.845	0.970	0.661	0.571	1.592	0.857	0.501	0.323	0.252	0.280	0.025	0.017	0.053			
	FCN-R	TF	2.647	1.913	1.157	0.919	3.410	2.541	1.297	0.661	0.361	0.325	0.033	0.020	0.063			
	ſ	MXNet	1.914	1.072	0.719	0.702	1.609	1.065	0.731	0.534	0.451	0.447	0.029	0.019	0.060			
		Torch	1.670	0.926	0.565	0.611	1.379	0.915	0.662	0.440	0.402	0.366	0.025	0.016	0.051			
		Caffe	3.558	2.587	2.157	2.963	4.270	3.514	3.381	3.364	4.139	4.930	0.041	0.027	0.137			
	ľ	CNTK	9.956	7.263	5.519	6.015	9.381	6.078	4.984	4.765	6.256	6.199	0.045	0.031	0.108			
	AlexNet-R	TF	4.535	3.225	1.911	1.565	6.124	4.229	2.200	1.396	1.036	0.971	0.227	0.317	0.385			
	[MXNet	13.401	12.305	12.278	11.950	17.994	17.128	16.764	16.471	17.471	17.770	0.060	0.032	0.122			
		Torch	5.352	3.866	3.162	3.259	6.554	5.288	4.365	3.940	4.157	4.165	0.069	0.043	0.141			
		Caffe	6.741	5.451	4.989	6.691	7.513	6.119	6.232	6.689	7.313	9.302	-	0.116	0.378			
	[CNTK	-	-	-	-	-	-	-	-	-	-	0.206	0.138	0.562			
	RenNet-56	TF	-	-	-	-	-	-	-	-	-	-	0.225	0.152	0.523			
	[MXNet	34.409	31.255	30.069	31.388	44.878	43.775	42.299	42.965	43.854	44.367	0.105	0.074	0.270			
		Torch	5.758	3.222	2.368	2.475	8.691	4.965	3.040	2.560	2.575	2.811	0.150	0.101	0.301			
		Caffe	-	-	-	-	-	-	-	-	-	-	-	-	-			
	ſ	CNTK	0.186	0.120	0.090	0.118	0.211	0.139	0.117	0.114	0.114	0.198	0.018	0.017	0.043			
	LSTM	TF	4.662	3.385	1.935	1.532	6.449	4.351	2.238	1.183	0.702	0.598	0.133	0.065	0.140			
		MXNet	-	-	-	-	-	-	-	-	-	-	0.089	0.079	0.149			
	ľ	Torch	6.921	3.831	2.682	3.127	7.471	4.641	3.580	3.260	5.148	5.851	0.399	0.324	0.560			

• TensorFlow vs MXNet on CIFAR-10, 8 GPUs [from https://medium.com/@julsimon/keras-shoot-out-tensorflow-vs-mxnet-51ae2b30a9c0]


2	Using MXNet backend.		2 Using TensorFlow backend.
	X train shape: (50000, 3, 32, 32)		3 X_train shape: (50000, 32, 32, 3)
5	A_LMAIN SNAPE: (50000, 5, 52, 52)		4 50000 train samples
4	50000 train samples	5	5 10000 test samples
5	10000 test samples	6	6 [output removed]
			7 2017-09-03 13:32:03.432572: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1030] Creating Tenso
6	[output removed]	8	2017-09-03 13:32:03.432584: I tensorflow/core/common_runtime/gpu_gpu_device.cc:1030] Creating Tenso
7	Epoch 2/100	9	2017-09-03 13:32:03.432600: I tensorflow/core/common_runtime/gpu_gpu_device.cc:1030] Creating Tenso
8	50000/50000 [=====================] - 25s - loss: 6.7589 - acc: 0.4978 - val loss: 7.0586	10	
Ŭ		11	
9	Epoch 3/100	12	
10	50000/50000 [========================] - 25s - loss: 6.4458 - acc: 0.5799 - val_loss: 7.2990	13	
11	Epoch 4/100	14	
		19	
12	50000/50000 [======================] - 25s - loss: 6.2015 - acc: 0.6478 - val_loss: 7.3075	10	
13	Epoch 5/100	17	
14		18	
14	50000/50000 [======================] - 25s - loss: 5.9922 - acc: 0.7095 - val_loss: 7.1960	20	
15	Epoch 6/100	21	
16	50000/50000 [=======================] - 25s - loss: 5.8184 - acc: 0.7620 - val_loss: 6.9669	22	
		23	
17	Epoch 7/100	24	
18	50000/50000 [=====================] - 25s - loss: 5.6454 - acc: 0.8120 - val_loss: 7.3894	25	
19	Epoch 8/100	26	
		27	
20	50000/50000 [=======================] - 25s - loss: 5.5012 - acc: 0.8554 - val_loss: 7.2800	28	
21	Epoch 9/100	29	50000/50000 [=======================] - 61s - loss: 6.1005 - acc: 0.7357 - val_loss: 6.6153
22	50000/50000 [======================] - 25s - loss: 5.3884 - acc: 0.8847 - val loss: 7.0814	30	Epoch 9/100
		31	50000/50000 [=================================
23	Epoch 10/100	32	2 Epoch 10/100
24	50000/50000 [==============] - 25s - loss: 5.2744 - acc: 0.9147 - val_loss: 7.2281	33	50000/50000 [

Benchmarking using Keras [graph from <u>https://www.datasciencecentral.com/profiles/blogs/search-for-the-fastest-deep-learning-framework-supported-by-keras</u>]


DL FRAMEWORKS: ON GITHUB

• GitHub star count! [from https://www.cio.com/article/3193689/artificial-intelligence/which-deep-learning-network-is-best-for-you.html]

DL FRAMEWORKS: PYTORCH VS TENSORFLOW

- Community of PyTorch is not as large as TensorFlow
- PyTorch does not have a visualization tool as powerful as Tensorboard in TensorFlow
- PyTorch is better for rapid prototyping for research. TensorFlow is better for large scale deployment
- PyTorch is easier to learn for beginners
- TensorFlow builds computation graphs "statically" but PyTorch does it "dynamically"

DL FRAMEWORKS: PYTORCH VS TENSORFLOW

- PyTorch code is easier to debug than TensorFlow
- PyTorch is new & does not cover all functionalities yet (e.g., there is no fft in PyTorch yet). Over time with more contributions to PyTorch this gap will be closed ...
- TensorFlow is better for deployment
 - Using TensorFlow serialaization the whole graph (including parameters and operations) can be saved, and then loaded for inference in other languages like C++ and Java. Quite useful when Python is not an option for deployment.
 - TensorFlow also works for mobile deployments (building mobile apps with TF <u>https://www.tensorflow.org/mobile/</u>), you don't need to code the DL architecture again for inference
- TensorFlow assumes you are using GPUs if any available. In PyTorch, everything should be explicitly moved to the device when using GPUs.
- PyTorch also have visualization tools like with similarities to TensorFlow's Tensorboard
 - Tensorboard_logger: <u>https://github.com/TeamHG-Memex/tensorboard_logger</u>
 - Crayon: <u>https://github.com/torrvision/crayon</u>

• From <u>https://en.wikipedia.org/wiki/Comparison of deep learning software</u>

Software 🔶	Creator 🜩	Software license ^[a] ◆	Open source ◆	Platform 🗢	Written in ◆	Interface 🗢	OpenMP support ◆	OpenCL support 🔶	CUDA support ÷	Automatic differentiation ^[1] ◆	Has pretrained ¢ models	Recurrent nets ◆	Convolutional nets ◆	RBM/DBNs 👻	Parallel execution (multi node)
Deeplearning4j	Skymind engineering team; Deeplearning4j community; originally Adam Gibson	Apache 2.0	Yes	Linux, Mac OS X, Windows, Android (Cross-platform)	C++, Java	Java, Scala, Clojure, Python (Keras), Kotlin	Yes	On roadmap ^[8]	Yes ^{[9][10]}	Computational Graph	Yes[11]	Yes	Yes	Yes	Yes ^[12]
Dlib	Davis King	Boost Software License	Yes	Cross-Platform	C++	C+++	Yes	No	Yes	Yes	Yes	No	Yes	Yes	Yes
Keras	François Chollet	MIT license	Yes	Linux, Mac OS X, Windows	Python	Python, R	Only if using Theano or MXNet as backend	Under development for the Theano backend (and on roadmap for the TensorFlow backend)	Yes	Yes	Yes ^[13]	Yes	Yes	Yes	Yes ^[14]
MXNet	Distributed (Deep) Machine Learning Community	Apache 2.0	Yes	Linux, Mac OS X, Windows, ^{[25][28]} AWS, Android, ^[27] iOS, JavaScript ^[28]	Small C++ core library	C++, Python, Julia, Matlab, JavaScript, Go, R, Scala, Perl	Yes	On roadmap ^[20]	Yes	Yes ^[30]	Yes ^[31]	Yes	Yes	Yes	Yes ^[32]
Apache SINGA	Apache Incubator	Apache 2.0	Yes	Linux, Mac OS X, Windows	C++	Python, C++, Java	No	Yes	Yes	?	Yes	Yes	Yes	Yes	Yes
TensorFlow	Google Brain team	Apache 2.0	Yes	Linux, Mac OS X, Windows ^[33]	C++, Python	Python (Keras), C/C++, Java, Go, R ^[34]	No	On roadmap ^[35] but already with SYCL ^[36] support	Yes	Yes ^[37]	Yes ^[38]	Yes	Yes	Yes	Yes
Theano	Université de Montréal	BSD license	Yes	Cross-platform	Python	Python (Keras)	Yes	Under development ^[39]	Yes	Yes ^{[40][41]}	Through Lasagne's model zoo ^[42]	Yes	Yes	Yes	Yes ^[43]
Torch	Ronan Collobert, Koray Kavukcuoglu, Clement Farabet	BSD license	Yes	Linux, Mac OS X, Windows, ^[44] Android, ^[45] iOS	C, Lua	Lua, LuaJIT, ^[46] C, utility library for C++/OpenCL ^[47]	Yes	Third party implementations ^{[48][49]}	Yes ^{[50][51]}	Through Twitter's Autograd ^[52]	Yes ^[53]	Yes	Yes	Yes	Yes ^[54]
Wolfram Mathematica	Wolfram Research	Proprietary	No	Windows, Mac OS X, Linux, Cloud computing	C++	Wolfram Language	No	No	Yes	Yes	Yes ^[65]	Yes	Yes	Yes	Yes
Microsoft Cognitive Toolkit	Microsoft Research	MIT license ^[16]	Yes	Windows, Linux ^[15] (OSX via Docker on roadmap)	C++	Python (Keras), C++, Command line, ^[17] BrainScript ^[18] (.NET on roadmap ^[19])	Yes ^[20]	No	Yes	Yes	Yes ^[21]	Yes ^[22]	Yes ^[22]	No ^[23]	Yes ^[24]
Caffe	Berkeley Vision and Learning Center	BSD license	Yes	Linux, Mac OS X, Windows ^[2]	C++	Python, MATLAB	Yes	Under development ^[3]	Yes	Yes	Yes ^[4]	Yes	Yes	No	?
Caffe2	Facebook	Apache 2.0	Yes	Linux, Mac OS X, Windows ^[5]	C++, Python	Python, MATLAB	Yes	Under development ^[6]	Yes	Yes	Yes ^[7]	Yes	Yes	No	Yes
MatConvNet	Andrea Vedaldi, Karel Lenc	BSD license	Yes	Windows, Linux ^[15] (OSX via Docker on roadmap)	C++	MATLAB, C++,	No	No	Yes	Yes	Yes	Yes	Yes	No	Yes
Neural Designer	ArteInics	Proprietary	No	Linux, Mac OS X, Windows	C++	Graphical user interface	Yes	No	No	?	?	No	No	No	?
OpenNN	ArteInics	GNU LGPL	Yes	Cross-platform	C++	C++	Yes	No	No	?	?	No	No	No	?
Gensim															
Paddle															
Pytorch															

- Microsoft Cognitive Toolkit (CNTK): <u>https://www.microsoft.com/en-us/cognitive-toolkit/</u>
- TensorFlow: <u>https://www.tensorflow.org/</u>
- Torch: <u>http://torch.ch/</u>
- PyTorch: <u>http://pytorch.org/</u>
- Caffe: <u>http://caffe.berkeleyvision.org/</u>
- Caffe2: <u>https://caffe2.ai/</u>
- Theano (RIP): <u>http://deeplearning.net/software/theano/</u>
- MXNet: <u>http://mxnet.incubator.apache.org/</u>
- Deeplearning4j: <u>https://deeplearning4j.org/</u>
- BigDL: https://software.intel.com/en-us/articles/bigdl-distributed-deep-learning-on-apache-spark
- High level NN APIs:
 - Keras [CNTK, TensorFlow, MXNet, DL4J and Theano backend]: <u>https://keras.io/</u>
 - Lasagne: [Theano backend] <u>https://lasagne.readthedocs.io/en/latest/</u>
- Chainer: <u>https://chainer.org/</u>
- DSSTNE: <u>https://github.com/amzn/amazon-dsstne</u>
- DyNet: <u>https://github.com/clab/dynet</u>
- Gluon: <u>https://github.com/gluon-api/gluon-api/</u>
- Paddle: <u>https://github.com/PaddlePaddle/Paddle</u>

- Microsoft Cognitive Toolkit (CNTK): <u>https://www.microsoft.com/en-us/cognitive-toolkit/</u>
- TensorFlow: <u>https://www.tensorflow.org/</u>
- Torch: <u>http://torch.ch/</u>
- PyTorch: <u>http://pytorch.org/</u>
- Caffe: <u>http://caffe.berkeleyvision.org/</u>
- Caffe2: <u>https://caffe2.ai/</u>
- Theano (RIP): <u>http://deeplearning.net/software/theano/</u>
- MXNet: <u>http://mxnet.incubator.apache.org/</u>
- Deeplearning4j: <u>https://deeplearning4j.org/</u>
- BigDL: https://software.intel.com/en-us/articles/bigdl-distributed-deep-learning-on-apache-spark
- High level NN APIs:
 - Keras [CNTK, TensorFlow, MXNet, DL4J and Theano backend]: <u>https://keras.io/</u>
 - Lasagne: [Theano backend] <u>https://lasagne.readthedocs.io/en/latest/</u>
- Chainer: <u>https://chainer.org/</u>
- DSSTNE: <u>https://github.com/amzn/amazon-dsstne</u>
- DyNet: <u>https://github.com/clab/dynet</u>
- Gluon: <u>https://github.com/gluon-api/gluon-api/</u>
- Paddle: <u>https://github.com/PaddlePaddle/Paddle</u>

No! Not Another Deep Learning Framework

Linh Nguyen* lvnguyen@umich.edu University of Michigan Peifeng Yu* peifeng@umich.edu University of Michigan Mosharaf Chowdhury mosharaf@umich.edu University of Michigan

Picture from http://www.mosharaf.com/wp-content/uploads/deepstack-hotos17.pdf

- Are you industry?
 - Speed and scale
 - Stability

DL4J

Microsoft Cognitive Toolkit (CNTK)

Caffe

TensorFlow

BigDL

MXNet ?!, Caffe2 ?!, DSSTNE ?!

- Are you a research organization?
 - Flexibility
 - Easy debuggability

PyTorch & Torch

Theano (RIP)

MXNet

TensorFlow

Microsoft Cognitive Toolkit (CNTK)

- Are you a DL beginner?
 - Do gradient calculation and backprop manually on paper once to fully understand it
 - Then start with a high level API to train your first DL model

• Are you a DL practitioner who wants to implement a model ASAP?

• Use a high level API

- Are you a university prof planning to use a DL framework for your class?
 - Use an easy to learn framework with fast ramp-up time

PyTorch **MXNet** TensorFlow Microsoft Cognitive Toolkit (CNTK)

• Are you an organization or company that needs commercial support?

• Are you doing computer vision?

Microsoft Cognitive Toolkit (CNTK)

• Are you using RNNs (LSTMs, GRUs, ...) and variable length sequences?

Microsoft Cognitive Toolkit (CNTK)

PyTorch

THANK YOU!

0